3,113 research outputs found

    Dye diffusion during laparoscopic tubal patency tests may suggest a lymphatic contribution to dissemination in endometriosis: A prospective, observational study

    Get PDF
    Aim Women with adenomyosis are at higher risk of endometriosis recurrence after surgery. This study was to assess if the lymphatic vessel network drained from the uterus to near organs where endometriosis foci lied. Methods A prospective, observational study, Canadian Task Force Classification II-2, was conducted at Sacro Cuore Don Calabria Hospital, Negrar, Italy. 104 white women aged 18–43 years were enrolled consecutively for this study. All patients underwent laparoscopy for endometriosis and a tubal dye test was carried out. Results Evidence of dye dissemination through the uterine wall and outside the uterus was noted in 27 patients (26%) with adenomyosis as it permeated the uterine wall and a clear passage of the dye was shown in the pelvic lymphatic vessels regardless whether the tubes were unobstructed. Histological assessment of the uterine biopsies confirmed adenomyosis. Conclusion Adenomyosis is characterized by ectatic lymphatics that allow the drainage of intrauterine fluids (the dye and, perhaps, menstrual blood) at minimal intrauterine pressure from the uterine cavity though the lymphatic network to extrauterine organs. Certainly, this may not be the only explanation for endometriosis dissemination but the correlation between the routes of the dye drainage and location of endometriosis foci is highly suggestive

    Multidimensional virtual globe for geo big data visualization

    Get PDF
    In this paper, we presented a web application created using the NASA WebWorldWind framework. The application is capable of visualizing n-dimensional data using a Voxel model. In this case study, we handled social media data and Call Detailed Records (CDR) of telecommunication networks. These were retrieved from the "BigData Challenge 2015" of Telecom Italia. We focused on the visualization process for a suitable way to show this geo-data in a 3D environment, incorporating more than three dimensions. This engenders an interactive way to browse the data in their real context and understand them quickly. Users will be able to handle several varieties of data, import their dataset using a particular data structure, and then mash them up in the WebWorldWind virtual globe. A broad range of public use this tool for diverse purposes is possible, without much experience in the field, thanks to the intuitive user-interface of this web app

    From paper maps to the Digital Earth and the Internet of Places

    Get PDF
    Maps have always been tools that have fascinated men, for their ability to make us see the world that surrounds us. They were and are the outcome of models and methods applied to the observation of the world, starting from geodesy, surveying photogrammetry and remote sensing. All these disciplines, which we now group under the new name of geomatics, have had a tremendous boost in recent years. However, the synergy with information computer technology is probably the aspect that is revolutionizing more cartography. Earlier computers and after the Internet have brought us to new concepts and tools that will have profound effects not only in the world of niche of cartographers, but also more generally in the life of all human beings. The Digital Earth, proposed in 1998 by Al Gore, has been enriched in just twenty years of a set of new demands, which make even more interesting and challenging being cartographers today. The paper, without claiming to be comprehensive, aims at providing a concise overview of the state of art and of the advancement in this area. Moreover, it urges the community of geomatics to be protagonist and promoter of a new cartography, largely to be reinvented, and that would put us at the center of processes of knowledge and management of the Earth. The map makers in the past helped discovering new worlds, now the challenge is to rediscover our common world with new eyes of environmental, social, economic equity, sustainability and participation

    Participatory GIS: experimentations for a 3D social virtual globe

    Get PDF
    The dawn of GeoWeb 2.0, the geographic extension of Web 2.0, has opened new possibilities in terms of online dissemination and sharing of geospatial contents, thus laying the foundations for a fruitful development of Participatory GIS (PGIS). The purpose of the study is to investigate the extension of PGIS applications, which are quite mature in the traditional bi-dimensional framework, up to the third dimension. More in detail, the system should couple a powerful 3D visualization with an increase of public participation by means of a tool allowing data collecting from mobile devices (e.g. smartphones and tablets). The PGIS application, built using the open source NASA World Wind virtual globe, is focussed on the cultural and tourism heritage of Como city, located in Northern Italy. An authentication mechanism was implemented, which allows users to create and manage customized projects through cartographic mash-ups of Web Map Service (WMS) layers. Saved projects populate a catalogue which is available to the entire community. Together with historical maps and the current cartography of the city, the system is also able to manage geo-tagged multimedia data, which come from user field-surveys performed through mobile devices and report POIs (Points Of Interest). Each logged user can then contribute to POIs characterization by adding textual and multimedia information (e.g. images, audios and videos) directly on the globe. All in all, the resulting application allows users to create and share contributions as it usually happens on social platforms, additionally providing a realistic 3D representation enhancing the expressive power of data

    Harnack inequality and regularity for degenerate quasilinear elliptic equations

    Full text link
    We prove Harnack inequality and local regularity results for weak solutions of a quasilinear degenerate equation in divergence form under natural growth conditions. The degeneracy is given by a suitable power of a strong AA_\infty weight. Regularity results are achieved under minimal assumptions on the coefficients and, as an application, we prove C1,αC^{1,\alpha} local estimates for solutions of a degenerate equation in non divergence form

    A NEW MULTI-RESOLUTION ALGORITHM TO STORE AND TRANSMIT COMPRESSED DTM

    Get PDF
    WebGIS and virtual globes allow DTMs distribution and three dimensional representations to the Web users' community. In these applications, the database storage size represents a critical point. DTMs are obtained by some sampling or interpolation on the raw observations and typically are stored and distributed by data based models, like for example regular grids. A new approach to store and transmit DTMs is presented. The idea is to use multi-resolution bilinear spline functions to interpolate the observations and to model the terrain. More in detail, the algorithm performs the following actions. 1) The spatial distribution of the observations is investigated. Where few data are available, few levels of splines are activated while more levels are activated where the raw observations are denser: each new level corresponds to an halving of the spline support with respect to the previous level. 2) After the selection of the spline functions to be activated, the relevant coefficients are estimated by interpolating the observations. The interpolation is computed by batch least squares. 3) Finally, the estimated coefficients of the splines are stored. The model guarantees a local resolution consistent with the data density and can be defined analytical, because the coefficients of a given function are stored instead of a set of heights. The approach is discussed and compared with the traditional techniques to interpolate, store and transmit DTMs, considering accuracy and storage requirements. It is also compared with another multi-resolution technique. The research has been funded by the INTERREG HELI-DEM (Helvetia Italy Digital Elevation Model) project

    A Dtm Multi-Resolution Compressed Model for Efficient Data Storage and Network Transfer

    Get PDF
    In recent years the technological evolution of terrestrial, aerial and satellite surveying, has considerably increased the measurement accuracy and, consequently, the quality of the derived information. At the same time, the smaller and smaller limitations on data storage devices, in terms of capacity and cost, has allowed the storage and the elaboration of a bigger number of instrumental observations. A significant example is the terrain height surveyed by LIDAR (LIght Detection And Ranging) technology where several height measurements for each square meter of land can be obtained. The availability of such a large quantity of observations is an essential requisite for an in-depth knowledge of the phenomena under study. But, at the same time, the most common Geographical Information Systems (GISs) show latency in visualizing and analyzing these kind of data. This problem becomes more evident in case of Internet GIS. These systems are based on the very frequent flow of geographical information over the internet and, for this reason, the band-width of the network and the size of the data to be transmitted are two fundamental factors to be considered in order to guarantee the actual usability of these technologies. In this paper we focus our attention on digital terrain models (DTM's) and we briefly analyse the problems about the definition of the minimal necessary information to store and transmit DTM's over network, with a fixed tolerance, starting from a huge number of observations. Then we propose an innovative compression approach for sparse observations by means of multi-resolution spline functions approximation. The method is able to provide metrical accuracy at least comparable to that provided by the most common deterministic interpolation algorithms (inverse distance weighting, local polynomial, radial basis functions). At the same time it dramatically reduces the number of information required for storing or for transmitting and rebuilding a digital terrain model dataset. A brief description of the method is presented and comparisons about the accuracy and data-store compression obtained with respect to other interpolators are shown

    NASA WEBWORLDWIND: MULTIDIMENSIONAL VIRTUAL GLOBE FOR GEO BIG DATA VISUALIZATION

    Get PDF
    In this paper, we presented a web application created using the NASA WebWorldWind framework. The application is capable of visualizing n-dimensional data using a Voxel model. In this case study, we handled social media data and Call Detailed Records (CDR) of telecommunication networks. These were retrieved from the "BigData Challenge 2015" of Telecom Italia. We focused on the visualization process for a suitable way to show this geo-data in a 3D environment, incorporating more than three dimensions. This engenders an interactive way to browse the data in their real context and understand them quickly. Users will be able to handle several varieties of data, import their dataset using a particular data structure, and then mash them up in the WebWorldWind virtual globe. A broad range of public use this tool for diverse purposes is possible, without much experience in the field, thanks to the intuitive user-interface of this web app

    Interleaving in Systolic-Arrays: a Throughput Breakthrough

    Get PDF
    In past years the most common way to improve computers performance was to increase the clock frequency. In recent years this approach suffered the limits of technology scaling, therefore computers architectures are shifting toward the direction of parallel computing to further improve circuits performance. Not only GPU based architectures are spreading in consideration, but also Systolic Arrays are particularly suited for certain classes of algorithms. An important point in favor of Systolic Arrays is that, due to the regularity of their circuit layout, they are appealing when applied to many emerging and very promising technologies, like Quantum-dot Cellular Automata and nanoarrays based on Silicon NanoWire or on Carbon nanotube Field Effect Transistors. In this work we present a systematic method to improve Systolic Arrays performance exploiting Pipelining and Input Data Interleaving. We tackle the problem from a theoretical point of view first, and then we apply it to both CMOS technology and emerging technologies. On CMOS we demonstrate that it is possible to vastly improve the overall throughput of the circuit. By applying this technique to emerging technologies we show that it is possible to overcome some of their limitations greatly improving the throughput, making a considerable step forward toward the post-CMOS era
    corecore